CYCLE \# 4 Domain, Range, and Symmetry

Show all work. No Calculator

1. Find the x - and y-intercepts and domain, then sketch the graph and find the range.
(a) $f(x)=\sqrt{2-x}$
(b) $g(x)=\sqrt{4-x^{2}}$
(c) $f(t)=\frac{|t-3|}{t-3}$
(d) $h(m)= \begin{cases}(m-1)^{2}, & m \geq 1 \\ 3 m-3, & m<1\end{cases}$
2. Sketch the following piecewise functions, then find the domain and range of each.
(a) $f(x)= \begin{cases}3-x, & x \leq 1 \\ 2 x, & 1<x\end{cases}$
(b) $g(x)= \begin{cases}2, & x<0 \\ \sqrt{x}, & x \geq 0\end{cases}$
(c) $h(t)= \begin{cases}t^{2}, & t<0 \\ t^{3}, & 0 \leq t \leq 1 \\ 2 t-1, & t>1\end{cases}$
3. Write a piecewise function for the given graphs
(a)

(b)

Multiple Choice

\qquad 4. Which of the following defines a function f for which $f(-x)=-f(x)$?
(A) $f(x)=x^{2}$
(B) $f(x)=\sin x$
(C) $f(x)=\cos x$
(D) $f(x)=\log x$
(E) $f(x)=e^{x}$
\qquad 5. Which of the following equations has a graph that is symmetric with respect to the origin?
(A) $y=\frac{x+1}{x}$
(B) $y=-x^{5}+3 x$
(C) $y=x^{4}-2 x^{2}+6$
(D) $y=(x-1)^{3}+1$
(E) $y=\left(x^{2}+1\right)^{2}-1$
\qquad 4. If $F(x)=x^{-2 / 3}(x-2)^{2 / 3}+x^{1 / 3}(x-2)^{-1 / 3}$, find the domain of F.
(A) $D_{F}:\{x \mid x \neq 0\}$
(B) $D_{F}:\{x \mid x>0\}$
(C) $D_{F}:\{x \mid 0 \leq x \leq 2\}$
(D) $D_{F}:\{x \mid x \neq 0$ and $x \neq 2\}$
(E) $D_{F}:\{x \mid x$ is a real number $\}$
5. The domain of the function defined by $g(x)=\ln \left(x^{2}-4\right)$ is the set of all real numbers x such that
(A) $|x|<2$
(B) $|x| \leq 2$
(C) $|x|>2$
(D) $|x| \geq 2$
(E) x is a real number
\qquad 6. The graph of $y^{2}=x^{2}+9$ is symmetric to which of the following?
I. The x-axis
II. The y-axis
III. The origin
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III
2. What is the domain of the function f given by $f(x)=\frac{\sqrt{x^{2}-4}}{x-3}$?
(A) $\{x: x \neq 3\}$
(B) $\{x:|x| \leq 2\}$
(C) $\{x:|x| \geq 2\}$
(D) $\{x:|x| \geq 2$ and $x \neq 3\}$
(E) $\{x: x \geq 2$ and $x \neq 3\}$
8. Let f and g be odd functions. If p, r, and s are nonzero functions defined as follows, which must be odd?
I. $p(x)=f(g(x))$
II. $r(x)=f(x)+g(x)$
III. $s(x)=f(x) g(x)$
(A) I only
(B) II only
(C) I and II only
(D) II and III only
(E) I, II, and III

- 9. If the function f is continuous for all real numbers and if $f(x)=\frac{x^{2}-4}{x+2}$ when $x \neq-2$, then $f(-2)=$
(A) -4
(B) -2
(C) -1
(D) 0
(E) 2
_10. Let f be the function defined by $f(x)=\left\{\begin{array}{ll}x^{3} & \text { for } x \leq 0, \\ x & \text { for } x>0 .\end{array}\right.$ Which of the following statements about f is true?
(A) f is an odd function
(B) There is a break in the graph of f at $x=0$
(C) f has no x-intercepts
(D) f is monotonic increasing
(E) $f(|x|)=|x|$

11. Find the domain of the function $f(x)=\frac{\sqrt{x+1}}{x-5}$.
(A) $D_{f}:\{x \mid x \geq 1\}$
(B) $D_{f}:\{x \mid x<1, x \neq-5\}$
(C) $D_{f}:\{x \mid x \leq-1, x \neq-5\}$
(D) $D_{f}:\{x \mid x>-1, x \neq-5\}$
(E) $D_{f}:\{x \mid x \leq 1\}$
(F) $D_{f}:\{x \mid x \geq-1, x \neq-5\}$
12. Which of the following functions has the following graph of $x \in[-6,6], x \neq 1$
(A) $f(x)=-\frac{x^{2}-1}{|x+1|}$
(B) $f(x)=\frac{\left|x^{2}-1\right|}{x-1}$
(C) $f(x)=-\frac{\left|x^{2}-1\right|}{x-1}$
(D) $f(x)=\frac{x^{2}-1}{|x+1|}$
(E) $f(x)=\frac{x^{2}-1}{|x-1|}$
(F) $f(x)=-\frac{x^{2}-1}{|x-1|}$

\qquad 13. Which of the following gives the domain of $f(x)=\frac{x}{\sqrt{9-x^{2}}}$?
(A) $x \neq \pm 3$
(B) $(-3,3)$
(C) $[-3,3]$
(D) $(-\infty,-3) \cup(3, \infty)$
(E) $(3, \infty)$
-14. Which of the following gives the range of $f(x)=1+\frac{1}{x-1}$?
(A) $(-\infty, 1) \cup(1, \infty)$
(B) $y \neq 1$
(C) all real numbers
(D) $(-\infty, 0) \cup(0, \infty)$
(E) $y \neq 0$
\qquad 15. Which of the following gives the range of $y=4-2^{-x}$?
(A) $(-\infty, 2)$
(B) $(-\infty, 4)$
(C) $[-4, \infty)$
(D) $(-\infty, 4]$
(E) all reals
\qquad 16. Which of the following gives the domain of $f(x)=3-\ln (x+2)$?
(A) $x \neq 2$
(B) $(-\infty, \infty)$
(C) $(-2, \infty)$
(D) $[-1.9, \infty)$
(E) $(0, \infty)$
\qquad 17. The domain of the function $f(x)=\ln \left(x^{2}-x-6\right)$ is the set of all real numbers x such that
(A) $x>0$
(B) $-2 \leq x \leq 3$
(C) $x \geq-2$ or $x \geq 3$
(D) $x<-2$ or $x>3$
(E) $-2<x<3$
\qquad 18. The domain of $y=\sqrt{(x-1)(x-2)}$ is
(A) $|x|<2$
(B) $(1,2)$
(C) $|x|>2$
(D) $(-\infty, 1] \cup[2, \infty)$
(E) $[1,2]$
